OBSERVATIONS & RECOMMENDATIONS After reviewing data collected from **Scobie Pond (Haunted Lake)**, **Francestown**, the program coordinators have made the following observations and recommendations. We congratulate your group for sampling your pond **once** this summer. However, we strongly encourage your monitoring group to sample **additional** times each summer. Typically, we recommend that monitoring groups sample **three times** per summer (once in **June**, **July**, and **August**). We understand that the number of sampling events you decide to conduct per summer will depend upon volunteer availability, and your monitoring group's goals and funding availability. However, with a limited amount of data it is difficult to determine accurate and representative water quality trends. Since weather patterns and activity in the watershed can change throughout the summer, from year to year, and even from hour to hour during a rain event, it is a good idea to sample the pond at least once per month during the summer. If you are having difficulty finding volunteers to help sample or to travel to one of the laboratories, please call the VLAP Coordinator and DES will help you work out an arrangement. We encourage your monitoring group to formally participate in the DES Weed Watchers program, a volunteer program dedicated to monitoring lakes and ponds for the presence of exotic aquatic plants. This program only involves a small amount of time during the summer months. Volunteers survey their waterbody once a month from May through **September**. To survey, volunteers slowly boat, or even snorkel, around the perimeter of the waterbody and any islands it may contain. Using the materials provided in the Weed Watcher kit, volunteers look for any species that are suspicious. After a trip or two around the waterbody, volunteers will have a good knowledge of its plant community and will immediately notice even the most subtle changes. If a suspicious plant is found, the volunteers immediately send a specimen to DES for identification. If the plant specimen is an exotic species, a biologist will visit the site to determine the extent of the problem and to formulate a management plan to control the nuisance infestation. Remember that early detection is the key to controlling the spread of exotic plants. If you would like to help protect your lake or pond from exotic plant infestations, contact Amy Smagula, Exotic Species Program Coordinator, at 271-2248 or visit the Weed Watchers website at www.des.nh.gov/organization/divisions/water/wmb/exoticspecies/weed watcher.htm. ## FIGURE INTERPRETATION #### CHLOROPHYLL-A Figure 1 and Table 1: Figure 1 in Appendix A shows the historical and current year chlorophyll-a concentration in the water column. Table 1 in Appendix B lists the maximum, minimum, and mean concentration for each sampling year that the pond has been monitored through VLAP. Chlorophyll-a, a pigment found in plants, is an indicator of the algal abundance. Algae (also known as phytoplankton) are typically microscopic, chlorophyll producing plants that are naturally occurring in lake ecosystems. The chlorophyll-a concentration measured in the water gives biologists an estimation of the algal concentration or lake productivity. The median summer chlorophyll-a concentration for New Hampshire's lakes and ponds is 4.58 mg/m³. The current year data (the top graph) show that the chlorophyll-a concentration was **12.28 mg/m³** in **August**. The historical data (the bottom graph) show that the **2009** chlorophyll-a mean is *much greater than* the state and similar lake medians, and is the highest (worst) mean chlorophyll since monitoring began. For more information on the similar lake median, refer to Appendix F. Overall, visual inspection of the historical data trend line (the bottom graph) shows an *increasing* n-lake chlorophyll-a trend since monitoring began. Specifically the mean chlorophyll concentration has *worsened* since **2002**. After 10 consecutive years of sample collection, we will be able to conduct a statistical analysis of the historical data to objectively determine if there has been a significant change in the annual mean chlorophyll-a concentration since monitoring began. While algae are naturally present in all lakes and ponds, an excessive or increasing amount of any type is not welcomed. In freshwater lakes and ponds, phosphorus is the nutrient that algae typically depend upon for growth in New Hampshire lakes. Algal concentrations may increase as nonpoint sources of phosphorus from the watershed increase, or as in-lake phosphorus sources increase. Therefore, it is extremely important for volunteer monitors to continually educate all watershed residents about management practices that can be implemented to minimize phosphorus loading to surface waters. #### TRANSPARENCY Figure 2 and Tables 3a and 3b: Figure 2 in Appendix A shows the historical and current year data for transparency with and without the use of a viewscope. Table 3a in Appendix B lists the maximum, minimum and mean transparency data without the use of a viewscope and Table 3b lists the maximum, minimum and mean transparency data with the use of a viewscope for each year that the pond has been monitored through VLAP. Volunteer monitors use the Secchi disk, a 20 cm disk with alternating black and white quadrants, to measure how far a person can see into the water. Transparency, a measure of water clarity, can be affected by the amount of algae and sediment in the water, as well as the natural lake color of the water. **The median summer transparency for New Hampshire's lakes and ponds is 3.2 meters.** The current year data (the top graph) show that the non-viewscope inlake transparency was **1.33 meters** in **August**. The relatively low transparency was likely due to the abundant algal growth experienced in June. The historical data (the bottom graph) show that the **2009** mean non-viewscope transparency is *much less than* the state and similar lake medians, and is the lowest (worst) mean transparency since monitoring began. Please refer to Appendix F for more information about the similar lake median. The current year data (the top graph) show that the viewscope in-lake transparency was *greater than* the non-viewscope transparency on the **August** sampling event. A comparison of transparency readings taken with and without the use of a viewscope shows that the viewscope typically increases the depth to which the Secchi disk can be seen into the lake, particularly on sunny and windy days. We recommend that your group measure Secchi disk transparency with and without the viewscope on each sampling event. It is important to note that viewscope transparency data are not compared to a New Hampshire median or similar lake median. This is because lake transparency with the use of a viewscope has not been historically measured by DES. At some point in the future, the New Hampshire and similar lake medians for viewscope transparency will be calculated and added to the appropriate graphs. Overall, visual inspection of the historical data trend line (the bottom graph) shows a *decreasing* trend for in-lake non-viewscope transparency, meaning that the transparency has *worsened* since monitoring began in **2002**. Again, please keep in mind that this trend is based on only *eight* years of data. As previously discussed, after 10 consecutive years of sample collection, we will be able to conduct a statistical analysis of the historical data to objectively determine if there has been a significant change in the annual mean transparency since monitoring began. Typically, high intensity rainfall causes sediment-laden stormwater runoff to flow into surface waters, thus increasing turbidity and decreasing clarity. Efforts to stabilize stream banks, lake and pond shorelines, disturbed soils within the watershed, and especially dirt roads located immediately adjacent to the edge of tributaries and the lake or pond should continue on an annual basis. Guides to best management practices that can be implemented to reduce, and possibly even eliminate, nonpoint source pollutants, are available from DES upon request. ## **TOTAL PHOSPHORUS** Figure 3 and Table 8: The graphs in Figure 3 in Appendix A show the amount of epilimnetic (upper layer) phosphorus and hypolimnetic (lower layer) phosphorus; the inset graphs show current year data. Table 8 in Appendix B lists the annual maximum, minimum, and median concentration for each deep spot layer and each tributary since the pond has been sampled through VLAP. Phosphorus is typically the limiting nutrient for vascular aquatic plant and algae growth in New Hampshire's lakes and ponds. Excessive phosphorus in a lake or pond can lead to increased plant and algal growth over time. The median summer total phosphorus concentration in the epilimnion (upper layer) of New Hampshire's lakes and ponds is 12 ug/L. The median summer phosphorus concentration in the hypolimnion (lower layer) is 14 ug/L. The current year data for the epilimnion (the top inset graph) show that the phosphorus concentration was **21 ug/L** in **August**. The historical data show that the **2009** mean epilimnetic phosphorus concentration is *much greater than* the state and similar lake medians, and is the highest (worst) mean phosphorus concentration since monitoring began. Refer to Appendix F for more information about the similar lake median. The current year data for the hypolimnion (the bottom inset graph) show that the phosphorus concentration was **26 ug/L** in **August**. The hypolimnetic (lower layer) turbidity sample was **slightly elevated** on the **August** sampling event (**2.04 NTUs**). This suggests that the pond bottom may have been disturbed by the anchor or by the Kemmerer Bottle while sampling and/or that the pond bottom is covered by an easily disturbed thick organic layer of sediment. When the pond bottom is disturbed, phosphorus rich sediment is released into the water column. When collecting the hypolimnion sample, make sure that there is no sediment in the Kemmerer Bottle before filling the sample bottles. The historical data show that the **2009** mean hypolimnetic phosphorus concentration is *much greater than* the state and similar lake medians, and is the highest (worst) mean phosphorus concentration since monitoring began. Please refer to Appendix F for more information about the similar lake median. Overall, visual inspection of the historical data trend line for the epilimnion shows a *relatively stable* phosphorus trend. Specifically, the mean annual epilimnetic phosphorus concentration has *remained approximately the same* since monitoring began in **2002**. Overall, visual inspection of the historical data trend line for the hypolimnion shows a *variable* phosphorus trend since monitoring began. Specifically the mean annual concentration has *fluctuated between approximately 10 and 26 ug/L* since monitoring began in 2002. As discussed previously, after 10 consecutive years of sample collection, we will be able to conduct a statistical analysis of the historical data to objectively determine if there has been a significant change in the annual mean phosphorus concentration since monitoring began. One of the most important approaches to reducing phosphorus loading to a waterbody is to continually educate watershed residents about the watershed sources of phosphorus and how excessive phosphorus loading can negatively impact the ecology and the recreational, economical, and ecological value of lakes and ponds. #### TABLE INTERPRETATION ## > Table 2: Phytoplankton Table 2 in Appendix B lists the current and historical phytoplankton and/or cyanobacteria observed in the pond. Specifically, this table lists the three most dominant phytoplankton and/or cyanobacteria observed in the sample and their relative abundance in the sample. The dominant phytoplankton and/or cyanobacteria observed in the August sample were Synura (Golden-Brown), Chrysosphaerella (Golden-Brown), and Dinobryon (Golden-Brown). Phytoplankton populations undergo a natural succession during the growing season. Please refer to the "Biological Monitoring Parameters" section of this report for a more detailed explanation regarding seasonal plankton succession. Diatoms and golden-brown algae populations are typical in New Hampshire's less productive lakes and ponds. ## > Table 4: pH Table 4 in Appendix B presents the in-lake and tributary current year and historical pH data. pH is measured on a logarithmic scale of 0 (acidic) to 14 (basic). pH is important to the survival and reproduction of fish and other aquatic life. A pH below 6.0 typically limits the growth and reproduction of fish. A pH between 6.0 and 7.0 is ideal for fish. The median pH value for the epilimnion (upper layer) in New Hampshire's lakes and ponds is **6.6**, which indicates that the state surface waters are slightly acidic. For a more detailed explanation regarding pH, please refer to the "Chemical Monitoring Parameters" section of this report. The mean pH at the deep spot this year ranged from **6.11** in the hypolimnion to **6.64** in the epilimnion, which means that the water is *slightly acidic*. It is important to point out that the hypolimnetic (lower layer) pH was *lower (more acidic)* than in the epilimnion (upper layer). This increase in acidity near the pond bottom is likely due to the decomposition of organic matter and the release of acidic by-products into the water column. Due to the state's abundance of granite bedrock in the state and acid deposition received from snowmelt, rainfall, and atmospheric particulates, there is little that can be feasibly done to effectively increase pond pH. # > Table 5: Acid Neutralizing Capacity Table 5 in Appendix B presents the current year and historical epilimnetic ANC for each year the pond has been monitored through VLAP. Buffering capacity (ANC) describes the ability of a solution to resist changes in pH by neutralizing the acidic input. The median ANC value for New Hampshire's lakes and ponds is **4.8 mg/L**, which indicates that many lakes and ponds in the state are at least "moderately vulnerable" to acidic inputs. For a more detailed explanation about ANC, please refer to the "Chemical Monitoring Parameters" section of this report. The mean acid neutralizing capacity (ANC) of the epilimnion (upper layer) was **7.4 mg/L**, which is **slightly greater than** the state median. In addition, this indicates that the pond is **moderately vulnerable** to acidic inputs. ## > Table 6: Conductivity Table 6 in Appendix B presents the current and historical conductivity values for tributaries and in-lake data. Conductivity is the numerical expression of the ability of water to carry an electric current, which is determined by the number of negatively charged ions from metals, salts, and minerals in the water column. The median conductivity value for New Hampshire's lakes and ponds is **40.0 uMhos/cm**. For a more detailed explanation, please refer to the "Chemical Monitoring Parameters" section of this report. The mean annual epilimnetic conductivity at the deep spot this year was **50.9 uMhos/cm**, which is **slightly greater than** the state median. The **2009** conductivity results for the deep spot and tributaries were *lower than* has been measured **during the past few years**. The record rainfall during the **2009 summer season** possibly diluted the ion concentration in surface waters throughout the watershed. Specifically, the significant summer rainfalls likely increased the flushing rate for many ponds allowing potential watershed pollutants to flush through the system and not concentrate in the stratified surface waters. Also, the in-lake conductivity has **decreased slightly** (meaning **improved**) in the pond since monitoring began. Increases in conductivity typically indicate the influence of human activities on surface water quality. Septic system leachate, agricultural runoff, iron deposits, and road runoff which typically contains road salt during the spring snow melt, can each influence conductivity readings. This **decreasing** conductivity trend suggests the reduction of pollutants and erosion in the watershed. We hope that this improving trend continues! However, it is possible that de-icing materials applied to nearby roadways during the winter months may be influencing the conductivity in the pond. In New Hampshire, the most commonly used de-icing material is salt (sodium chloride). Therefore, we recommend that the **epilimnion** (upper layer) be sampled for chloride next year. This additional sampling may help us identify what areas of the watershed are contributing to the increasing in-lake conductivity. Please note that the DES Limnology Center in Concord is able to conduct chloride analyses, free of charge. As a reminder, it is best to conduct chloride sampling in the spring as the snow is melting and during rain events. ## > Table 8: Total Phosphorus Table 8 in Appendix B presents the current year and historical total phosphorus data for in-lake and tributary stations. Phosphorus is the nutrient that limits the algae's ability to grow and reproduce. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation. The total phosphorus concentration was *slightly elevated* (23 ug/L) in the **Outlet** this year. Record summer rainfall likely increased stormwater runoff and nutrient loading to the tributary. As impervious surface cover increases in the watershed, stormwater runoff volumes increase. This transports phosphorus-laden stormwater into tributaries and eventually the pond. Efforts should be made in the watershed to reduce impervious surfaces and limit phosphorus sources such as fertilizer use, septic influences, agricultural impacts, and sediment/erosion control. For a detailed explanation on how to conduct rain event sampling and stream surveys, please refer to the 2002 VLAP Annual Report special topic article, which is posted on the VLAP website at http://www.des.nh.gov/organization/divisions/water/wmb/vlap/categories/publications.htm, or contact the VLAP Coordinator. Table 9 and Table 10: Dissolved Oxygen and Temperature Data Table 9 in Appendix B shows the dissolved oxygen/temperature profile(s) collected during 2009. Table 10 in Appendix B shows the historical and current year dissolved oxygen concentration in the hypolimnion (lower layer). The presence of sufficient amounts of dissolved oxygen in the water column is vital to fish and amphibians and bottom-dwelling organisms. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation. The dissolved oxygen concentration was *lower in the hypolimnion* (*lower layer*) than in the epilimnion (upper layer) at the deep spot on the **August** sampling event. As stratified ponds age, and as the summer progresses, oxygen typically becomes **depleted** in the hypolimnion by bacterial decomposition. Specifically, the reduction of hypolimnetic oxygen is primarily a result of biological organisms using oxygen to break down organic matter, both in the water column and particularly at the bottom of the lake or pond where the water meets the sediment. When the hypolimnetic oxygen concentration is depleted to less than 1 mg/L, the phosphorus that is normally bound up in the sediment may be re-released into the water column, a process referred to as **internal phosphorus loading**. **Lower** hypolimnetic oxygen levels are a sign of the pond's **aging** health. This year the DES biologist collected the dissolved oxygen profile in **August**. We recommend that the annual biologist visit for the **2010** sampling year be scheduled during **June** so that we can determine if oxygen is depleted in the hypolimnion **earlier** in the sampling year. ## > Table 11: Turbidity Table 11 in Appendix B lists the current year and historical data for in-lake and tributary turbidity. Turbidity in the water is caused by suspended matter, such as clay, silt, and algae. Water clarity is strongly influenced by turbidity. Please refer to the "Other Monitoring Parameters" section of this report for a more detailed explanation. As discussed previously, the hypolimnetic (lower layer) turbidity was **slightly elevated** (2.04 NTUs) on the **August** sampling event. In addition, the hypolimnetic turbidity has been elevated on many sampling events during previous sampling years. This suggests that the pond bottom may have been disturbed by the anchor or by the Kemmerer Bottle while sampling and/or that the lake bottom is covered by an easily disturbed, thick organic layer of sediment. When the pond bottom is disturbed, phosphorus rich sediment is released into the water column. When collecting the hypolimnion sample, make sure that there is no sediment in the Kemmerer Bottle before filling the sample bottles. # > Table 12: Bacteria (E.coli) Table 12 in Appendix B lists the current year and historical data for bacteria (*E.coli*) testing. *E. coli* is a normal bacterium found in the large intestine of humans and other warm-blooded animals. *E.coli* is used as an indicator organism because it is easily cultured and its presence in the water, in defined amounts, indicates that sewage **may** be present. If sewage is present in the water, potentially harmful disease-causing organisms **may** also be present. Bacteria sampling was not conducted this year. If residents are concerned about sources of bacteria such as failing septic systems, animal waste, or waterfowl waste, it is best to conduct *E. coli* testing when the water table is high, when beach use is heavy, or immediately after rain events. ## > Table 13: Chloride Table 13 in Appendix B lists the current year and the historical data for chloride sampling. The chloride ion (Cl-) is found naturally in some surfacewaters and groundwaters and in high concentrations in seawater. Research has shown that elevated chloride levels can be toxic to freshwater aquatic life. In order to protect freshwater aquatic life in New Hampshire, the state has adopted **acute and chronic** chloride criteria of **860 and 230 mg/L** respectively. The chloride content in New Hampshire lakes is naturally low, generally less than 2 mg/L in surface waters located in remote areas away from habitation. Higher values are generally associated with salted highways and, to a lesser extent, with septic inputs. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation. Chloride sampling was **not** conducted during **2009**. > Table 14: Current Year Biological and Chemical Raw Data Table 14 in Appendix B lists the most current sampling year results. Since the maximum, minimum, and annual mean values for each parameter are not shown on this table, this table displays the current year "raw," meaning unprocessed, data. The results are sorted by station, depth, and then parameter. ## > Table 15: Station Table As of the spring of 2004, all historical and current year VLAP data are included in the DES Environmental Monitoring Database (EMD). To facilitate the transfer of VLAP data into the EMD, a new station identification system had to be developed. While volunteer monitoring groups can still use the sampling station names that they have used in the past and are most familiar with, an EMD station name also exists for each VLAP sampling location. Table 15 in Appendix B identifies what EMD station name corresponds to the station names you have used in the past and will continue to use in the future. ## **DATA QUALITY ASSURANCE AND CONTROL** #### **Annual Assessment Audit:** During the annual visit to your pond, the biologist conducted a sampling procedures assessment audit for your monitoring group. Specifically, the biologist observed the performance of your monitoring group and completed an assessment audit sheet to document the volunteer monitors' ability to follow the proper field sampling procedures, as outlined in the VLAP Monitor's Field Manual. This assessment is used to identify any aspects of sample collection in which volunteer monitors failed to follow proper procedures, and also provides an opportunity for the biologist to retrain the volunteer monitors as necessary. This will ultimately ensure samples that the volunteer monitors collect are truly representative of actual lake and tributary conditions. Overall, your monitoring group did an *excellent* job collecting samples on the annual biologist visit this year! Specifically, the members of your monitoring group followed the proper field sampling procedures and there was no need for the biologist to provide additional training. Keep up the good work! ## **USEFUL RESOURCES** Best Management Practices to Control Nonpoint Source Pollution: A Guide for Citizens and Town Officials, DES Booklet WD-03-42, (603) 271-2975 or www.des.nh.gov/organization/commissioner/pip/publications/wd/docu ments/wd-03-42.pdf. Lake or Pond – What is the Difference? DES fact sheet WD-BB-49, (603) 271-2975 or http://des.nh.gov/organization/commissioner/pip/factsheets/bb/documents/bb-49.pdf Lake Protection Tips: Some Do's and Don'ts for Maintaining Healthy Lakes, DES fact sheet WD-BB-9, (603) 271-2975 or www.des.nh.gov/organization/commissioner/pip/factsheets/bb/docume nts/bb-9.pdf. NH Stormwater Management Manual Volume 1: Stormwater and Antidegradation, DES fact sheet WD-08-20A, (603) 271-2975 or http://des.nh.gov/organization/commissioner/pip/publications/wd/doc uments/wd-08-20a.pdf NH Stormwater Management Manual Volume 2: Post-Construction Best Management Practices Selection and Design, DES fact sheet WD-08-20B, (603) 271-2975 or http://des.nh.gov/organization/commissioner/pip/publications/wd/doc uments/wd-08-20b.pdf NH Stormwater Management Manual Volume 3: Erosion and Sediment Controls During Construction, DES fact sheet WD-08-20C, (603) 271-2975 or http://des.nh.gov/organization/commissioner/pip/publications/wd/doc uments/wd-08-20c.pdf Proper Lawn Care In the Protected Shoreland, The Comprehensive Shoreland Protection Act, DES fact sheet WD-SP-2, (603) 271-2975 or http://des.nh.gov/organization/commissioner/pip/factsheets/sp/documents/sp-2.pdf. Road Salt and Water Quality, DES fact sheet WD-WMB-4, (603) 271-2975 or www.des.nh.gov/organization/commissioner/pip/factsheets/wmb/documents/wmb-4.pdf. Vegetation Maintenance Within the Protected Shoreland, DES fact sheet WD-SP-5, (603) 271-2975 or http://des.nh.gov/organization/commissioner/pip/factsheets/sp/documents/sp-5.pdf Weed Watchers: An Association to Halt the Spread of Exotic Aquatic Plants, DES fact sheet WD-BB-4, (603) 271-2975 or http://des.nh.gov/organization/commissioner/pip/factsheets/bb/docu ments/bb-4.pdf.